© Copyright Statement

All rights reserved. All material in this document is, unless otherwise stated, the property of **FPC International, Inc**. Copyright and other intellectual property laws protect these materials. Reproduction or retransmission of the materials, in whole or in part, in any manner, without the prior written consent of the copyright holder, is a violation of copyright law.

.

EVALUATION OF FPC-1 FUEL PERFORMANCE CATALYST

AT

ANDHRA PRADESH STATE ROAD TRANSPORT CORPORATION, HYDRABAD NO 2 BUS DEPOT

October, 1994

Report prepared by:

R A Platt Fuel Technology Pty Ltd 70 Adelaide Street FREMANTLE WA 6160

> Tel: (09) 335 6899 Fax: (09) 430 5403

> > ACN 063 561 151

CONTENTS

Executive Summary	Page	1
Introduction	Page	2
Test Equipment	Page	2
Test Procedure	Page	3
Results		
Carbon Balance	Page	4
Smoke Tests	Page	4
Conclusion	Page	5

Appendices

"A"	Fuel Technology Measurements using Carbon Balance Techniques
"B"	Raw Data Sheets
"C"	Computer printouts - results
"D"	Bosch Smoke Patches

* * * *

EXECUTIVE SUMMARY

The basis of this study was to analyse the fuel efficiency effects of UHI Corporation's FPC-1 Fuel Performance Catalyst in a group of six (6) buses operated by the Andhra Pradesh State Road Transport Corporation at the Hydrabad No. 2 Bus Depot.

The study of the buses fuel consumption was conducted by an analytical method, namely Carbon Balance. The Carbon Balance tests conducted on a small sample of buses representative of the fleet showed an average reduction in fuel consumption of 5.8%. Smoke emissions reduced by 10%.

The purpose of this report is to review the test procedures and report the results achieved.

The Carbon Balance evaluation has been conducted and analysed by Fuel Technology Pty Ltd, the Australian subsidiary of the US based UHI Corporation.

TEST METHOD - CARBON BALANCE (CB)

Carbon Balance (CB) measurement is a test procedure whereby the mass of carbon in the exhaust gas is calculated as a measure of fuel being burned. The elements measured in the test include the exhaust gas composition, its temperature and the gas flow rate calculated from the pressure and exhaust stack cross sectional area.

This is an engineering standard test (Australian Standard AS2077-1982, US - EPA).

The tests at Hydrabad involved adapting the exhaust pipe to a flexible trunkway straight for three meters which overcomes the potential for turbulent flow due to bends etc in the actual exhaust pipe.

TEST PROCEDURE

The four (4) buses which made up the final test fleet (*refer Table I below*) were driven to the test centre in the workshop and the engines run up until the exhaust temperature stabilised. The engine rpm was set by the "snap on throttle control" and Shimpo tachometer taking the reading off the fan pulley. Buses run up under high idle condition.

The Horiba infra red analyser was calibrated with standard Horiba span gas prior to the tests commencing. The instrument probe inserted and centred into the flexible exhaust pipe and readings recorded for the gases, temperature and differential pressure.

Concurrent with this procedure the Bosch Smoke Sampling pump was used to extract a sample of exhaust gas and the smoke density determined.

TABLE I

Summary of Engine RPM settings

Bus No.	Engine Type	Base RPM	Treated RPM
723	Leyland 370	2392	2329
3537	Hino WD6	2488	2490
4229	Hino WD6	2468	2445
6386	Leyland 6-65	2419	2429

CONCLUSION

The small sample of buses operating on FPC-1 treated fuel at Hydrabad No 2 Bus Depot showed a reduction in fuel consumption of 5.8% as measured by the exhaust emission Carbon Balance controlled test procedure.

Bosch Smoke measurements provided evidence of an average 10% reduction in smoke emissions.

The data work sheets and computer printouts are included in the Appendix. Also included is a description of the Carbon Balance procedure which includes the method of calculating the result.

Annexure "A"

Fuel Technology Measurements using Carbon Balance Techniques

FUEL TECHNOLOGY PTY LTD

•

ACN 005 945 915

70 Adelaide Street P.O. Box 1271 Fremantle 6160 Western Australia Telephone: (09) 335 6899 Facsimile: (09) 430 5403

FUEL TECHNOLOGY MEASUREMENTS

USING CARBON BALANCE TECHNIQUES

© Copyright, Fuel Technology Pty Ltd, 1985 Fremantle, W.A. (Reprinted 1987)

CONTENTS

.

INTRODUCTION

We are interested in measuring the amount of fuel used by an engine in doing a certain amount of work. This work is usually expressed as the distance covered by some equipment powered by the engine such as in a truck, or the amount of power produced over a certain time period for stationary equipment such as a generator. If all parameters are measured, expressions such as kilometres per litre (km/L) or kilowatt hours per litre (kW.h/L) can be calculated. In either case, the larger the number, the better the efficiency of the engine, i.e. the better the fuel consumption.

The measurement of distance covered or kilowatt hours is relatively easy to make in the field. However, determining the amount of fuel consumed is more difficult. A number of methods exist but often the practicability is not great. The amount of fuel may be measured volumetrically, i.e. measuring the volume of fuel used, or gravimetrically, i.e. weight of fuel consumed. It could also be calculated by measuring the flow of fuel through the fuel line. In all these cases existing equipment needs to be modified, often drastically, to produce acceptable accuracy. This is usually not desirable.

An alternative is to measure the fuel consumption indirectly by analysing what is leaving the engine, not what is going into it. This is the method used by Fuel Technology and is referred to as the CARBON BALANCE method. It is also the method used by the Standards Association of Australia (AS 2077-1982) although the techniques are slightly different.

The CARBON BALANCE method is based on the principle of conservation of matter. In this case it is assumed that what goes into an engine must come out again. The number of carbon atoms leaving the engine in the exhaust must exactly balance the number entering it. Hence the name "Carbon Balance". The only extra assumption which needs to be made is that there is no source of carbon other than from the fuel. This is the case with an engine in good condition, not burning a significant amount of oil.

Petroleum fuels are made up almost entirely from hydrogen and carbon. Combustion of the fuel with air in an internal combustion engine produces H_2O (water), CO_2 (carbon dioxide), CO (carbon monoxide), HC (various partially-burned hydrocarbons), particulate carbon (soot) and various other minor components including nitrous oxides and sulphides. We are only interested in those products which contain carbon, i.e. CO_2 , CO, HC and soot. If we can measure the amount of these components which leave the engine, then the equations developed in this paper can be used to calculate the amount of fuel used by an engine.

PERFORMANCE FACTOR

In the field it is impossible to measure the total mass of carbon in the exhaust as we cannot capture all the exhaust gas. However, it is possible to measure the rate at which the exhaust gases are leaving the engine and to determine the composition of the exhaust, and thus determine the rate at which fuel is being consumed. This rate for a given load is known as the "Performance Factor". This is defined as:

$$PF = \mathring{V}_{F}$$
(6a)
= $\mathring{M}_{CE} (12x + y)$ [from (5)] (6b)

Where PF = Performance Factor.

 $\dot{V}_{\rm F}$ = rate of change of $V_{\rm F}$ $\dot{M}_{\rm CE}$ = rate of change of $M_{\rm CE}$

[Example: if l litre of fuel is used in l minute (60 seconds) then $\dot{V}_{\rm F}$ = l litre/60 seconds = 1/60 litres per second.]

We also need the equation which relate the components of the exhaust gas to its mass. This is developed in the Appendix, giving:

$$\dot{M}_{CE} = \dot{Q}_{E} \frac{(V_{P} + 12P_{E} (XV_{HC} + V_{CO} + V_{CO_{2}}))}{RT_{E}}$$
(7)

where:

Φ́E	=	volumetric flow rate of exhaust m ³ /sec
P_{E}	=	exhaust pressure at sample point in pascals
T_{E}	=	exhaust temperature at sample point in kelvin (kelvin = °C + 273.16)
v _{co2}	=	volume fraction of CO ₂
V _{CO}	=	volume fraction of CO
VHC	=	volume fraction of HC
VP	=	mass of soot in kg/m ³
R	=	universal gas constant (=8.31 joule/mole K)
Х	=	number of carbon atoms per molecule of hydrocarbon in exhaust (usually X = 6)
P	=	density

Thus if we can measure each of these variables, $M_{\rm CE}$ and hence the Performance Factor, PF can be calculated using equation (6).

FUEL CONSUMPTION

As stated in the introduction we are interested in measuring the amount of fuel used in doing a certain amount of work. Once we have measured the performance factor we can calculate the fuel consumption, FC:

FC D/V_F = (lla) D/PF X T = or FC kW.h/VF = (11b) kW.h/PF x T = FC where = fuel consumption distance travelled D = time of test т = kW.h kilowatt hours =

Normally distance or kilowatt hours are easily measured.

CONCLUSION

Equation (7) gives the mass of carbon used per unit time; equation (10) gives the % change in fuel consumption and equation (6b) yields the volume of fuel used per unit time. All these quantities require the measurement of $M_{\rm CE}$.

Once the volume of fuel used has been determined, equation (11a) or (11b) can be used to calculate the fuel consumption of the engine.

APPENDIX

Development of the relationship between the density of carbon in the fuel to the density of the fuel.

$\rho_{\rm CF}$ = mass of carbon/litre of fuel.

If the fuel used has the hydrocarbon formula $C_x H_y$, then the fraction of the mass of fuel which is carbon is equal to:

= Molecular weight of carbon x number of carbon atoms per molecule Molecular weight of the fuel

$$\frac{MWC \times NC}{(MWC \times NC) + (MWh \times Nh)}$$
(ii)

Where

=

This means that (ii) becomes:

$$\frac{12x}{12x + y} = \text{fraction of mass of fuel which is carbon}$$

Now since this mass of carbon occupies the same volume as the fuel the ratios of the masses of carbon and fuel must be equal to the ratio of their densities. This means that:

$$\frac{\rho_{\rm CF}}{\rho_{\rm F}} = \frac{12x}{12x + y}$$
(iii)

which may be expressed equivalently as

$$\mathcal{P}_{CF} = \int_{F} x \frac{12x}{12x + y}$$
 (iv) = (3)

Derivation of the equation for mass of carbon in the exhaust

The mass of carbon in the exhaust

- the sum of the masses of carbon in each of the carbon-bearing exhaust components
 - mass of carbon as soot + mass of carbon in hydrocarbons + mass of carbon in carbon monoxide + mass of carbon in carbon dioxide.

This can be expressed as:

=

$$M_{CE} = M_{C} (soot) + M_{C}(HC) + M_{C}(CO) + M_{C}(CO_{2})$$
 (a)

It is important to note that the pressure, temperature, and volume must be measured at the same place otherwise the equation does not hold.

The pressure and temperature of all the gases is equal.

The volume of each of the components of the exhaust is equal to the total volume x the volume of fraction of that component. That is:

Volume of hydrocarbons =
$$V_{HC} \times Q_Z$$
 (f)

Where \mathtt{V}_{HC} is the volume fraction of the hydrocarbon gas component.

Then substituting (f) into (e) the expression for the number of moles of hydrocarbons is obtained:

$$u_{\rm HC} = \frac{PV_{\rm HC}}{RT} \times Q_{\rm Z} \tag{g}$$

Then substituting (g) into (c) the expression for the mass of carbon in the exhaust due to the hydrocarbons is obtained:

$$M_{C(HC)} = MW_{C} \times N_{C(HC)} \times \frac{PV_{HC}}{RT} \times Q_{E}$$
(h)

Equivalent equations are obtained for CO and CO2; these are:

$$M_{C(CO)} = MW_{C} \times N_{C(CO)} \times \frac{PV_{CO}}{RT} \times Q_{E}$$
(i)

and

$$M_{C(CO_2)} = MW_C \times N_{CO(CO_2)} \times \frac{PV_{CO_2}}{RT} \times Q_E$$
 (j)

These may be simplified by noting that:

N _C (HC)	=	6	(since	HCs	are	measured	as	hexane)
N _C (CO)	=	1						
$N_{C(CO_2)}$	=	1						

and

$$MW_{C} = 12.0$$

to obtain:

$$M_{C(HC)} = 12 \times 6 \times \frac{PV_{HC}}{PT} \times Q_E$$
 (k)

$$M_{C(C)} = 12 \times 1 \times \frac{PV_{CO}}{RT} \times Q_E$$
 (1)

and

$$M_{C(CO_2)} = 12 \times 1 \times \frac{PV_{CO_2}}{RT} \times Q_E$$
 (m)

Annexure "B"

Raw Data Sheets

×

	Ем	SSION D	ata Wor	к Ѕнеет	·
Fuel	PO Box 12	71 Fremantle 6160	• Phone: (09) 335 6899	9 • Fax (09) 430 54	03
Technology Bas	seline Test Date	116/94	.Treated Test Date	23/10/	<u>94.</u>
Company A P	SRTC H	ydca Sad	2		
Engine Description:	Pre-Comb	A/Cooled	I/Cooled	Turbo	N/Asp.
Type of equipment	B55-		Fleet/Unit Numbe	r	
Engine Make	Y.lan.MMo	del	R	ating	•••••••
Type of Fuel:	Baseline	·····	Treated		••••••
				2.4.00	
Engine Hours	Miles L	K	ms ⊥⊿ Baseline	212iac) B/11	Treated
Engine Test Mode:	Baseline		Treated	1 2194 614 Necr pis	tons
•		ANALYSI	S DATA	craniz O	pishine Bu
BASELINE					
Barometric (Mb)			Fuel Density (Kg/1)		•••••
Ambient Temp. ^O C			Engine RPM	2397	
Stack Dia. mm	100		Engine Load	Hi 10	41P.
Pressure Diff. (Pa)	60	60	60	60	60
Exhaust Temp. ^O C	124	124	124	124	125-
HC (ppm)	(O	10	10	10	10.
CO (%)	0.05	0.05	0.05	0.05	005
CO ₂ (%)	2-38		2.38	2-37	2.38
) O ₂ (%)	13-11	13.10	13.11	13.10	13.10
TREATED					
Barometric (Mb)	960		Fuel Density (Kg/1)		• • • • • • • • • • • • • • • • • • • •
Ambient Temp. ^O C	29		Engine RPM	237	4-232
Stack Dia. mm	100		Engine Load		dle_
Pressure Diff. (Pa)	[n. 2	65	65	65	65
Exhaust Temp. ^O C	119	[RO	120	LR I	121
HC (ppm)	30	30	30	3 t	31
CO (%)	0-05	0.05	0.05	0.05	0.0
CO ₂ (%)	2.03	2.03	2.03	203	2.03
O ₂ (%)	18-17	18-17	18.14	18-16	18.16
REMARKS			•		

	PO Box 1	271 Fremantle 616	50 • Phone: (09) 33	85 6899 • Fax ((99) 430 5403	
Fuel Technology Ba	seline Test Date	416190	Treated Test	Date2	3/10/94	
Company	+ PSRTC	Нудба	Sad Z			
Engine Description:	Pre-Comb	A/Cooled	I/Cooled] Tur	bo 🗌 N	/Asp.
Type of equipment	Bys		Fleet/Unit N	umber	229	•••••
Engine Make	MADE M	lodel	TO.WDG	Rating	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •
Type of Fuel:	Baseline	••••••	Treated	1210	1017 / Bm 7	
Engine Hours	Miles] , .	Kana I Pr	$a = \frac{1}{240}$	TOC Treated	1 3 81
					(La gral)	215
Engine Test Mode:	Baseline		Treated	Tut		
		ANALYS	IS DATA	(0).		790
BASELINE	C 1 C	•				-
Barometric (Mb)	9 48	•••••	Fuel Density (K	(g/1)		
Ambient Temp. ^o C	<u> </u>	•••••	Engine RPM	••••	2.468	
Stack Dia. mm			Engine Load		(t. 101) .	
Pressure Diff. (Pa)	l.1.1Q	[]]	10	- 110		
Exhaust Temp. ^O C		128	129	129	(2 <i>c</i> ₁	
HC (ppm)	<u>3 0</u>	<u> </u>	30	<u> </u>	30	
CO (%)	0.04.	G OZ	0.04	0.035		• • • • • • • • • • • • • • •
CO ₂ (%)	2.25	2.25	2.25	2.2.3	2.25	
O ₂ (%)	13.16	13.17	13.15	13.15	13.16	••••••
TREATED						
Barometric (Mb)	960		Fuel Density (K			
Ambient Temp. ^O C	28		Engine RPM		24-48-245	50
Stack Dia. mm	100		Engine Load		H' Idle	
Pressure Diff. (Pa)	i v O	100	99	ίυυ	99	
Exhaust Temp. ^O C	130	131	131	131	(3).	
HC (ppm)	30	30	30	30	30	•••••
CO (%)	0.04	0.04	0.04	0.04	0.01	
CO ₂ (%)	2.13	2.17	2.R.B.	2.28	2.12	
- O ₂ (%)	17.81	(7.81	17.80	17.81	17-82	ord og o • • • • • • • • • • • •
_				•		

Annexure "C"

Computer printouts - results

FUEL TECHNOLOGY PTY LTD

CARBON BALANCE RESULTS

COMPANY :	APSRTC	0		LOCATIO	HYDRAB	AD 2 DEPOT	
EQUIPMENT : ENG. TYPE : RATING :	BUS LEYLAND			UNIT NR. : MODEL : FUEL :	723 370		
BASELINE TEST				DATE :	4/6/94		
ENG. HOURS :	21623			ENG. RPM	2392		
AMB. TEMP (C):	34			STACK(m	100		
BAROMETRIC(mb):	948			LOAD:	Hi Idle		
	TEST 1	TEST 2	TEST 3	TEST 4	TEST 5	AVERAGE	% ST.DEV
PRES DIFF (Pa):	60	60	60	60	60	60	0.00
EXHST TEMP (C):	124	124	124	124	125	124	0.36
HC (ppm) :	10	10	10	10	10	10.0	0.00
CO (%) :	0.05	0.05	0.05	0.05	0.05	0.050	0.00
CO2 (%) :	2.38	2.37	2.38	2.37	2.38	2.38	0.23
O2 (%) :	13.11	13.10	13.11	13.10	13.10	13.10	0.04
CARB FLOW(g/s):	0.645	0.643	0.645	0.643	0.644	0.644	0.21
REYNOLDS NR. :	3.39E+04				=	<u></u>	
TREATED TEST	_			DATE :	23/10/94		
ENG. HOURS :	62998			ENG. RPM	2324-2334	1	
AMB. TEMP (C):	29			STACK(m	100		
BAROMETRIC(mb):	960			LOAD:	Hi Idle		
	TEST 1	TEST 2	TEST 3	TEST 4	TEST 5	AVERAGE	% ST.DEV
PRES DIFF (Pa):	62	65	65	65	65	64	2.08
EXHST TEMP (C):	119	120	120	121	121	120	0.70
HC (ppm) :	30	30	30	30	30	30.0	0.00
CO (%) :	0.05	0.05	0.05	0.05	0.05	0.050	0.00
CO2 (%) :	2.03	2.03	2.03	2.03	2.03	2.03	0.00
O2 (%) :	18.17	18.17	18.14	18.16	18.16	18.16	0.07
CARB FLOW(g/s):	0.570	0.583	0.583	0.582	0.582	0.580	0.97
REYNOLDS NR. :	3.55E+04		TOTAL H	IOURS ON T	REATED	41375	

PERCENTAGE CHANGE IN FUEL CONSUMPTION ((TREATED-BASE)/

-9.9 %

REMARKS:

FUEL TECHNOLOGY PTY LTD

CARBON BALANCE RESULTS

APSRTC			LOCATIO	HYDRAB	AD 2 DEPOT	
BUS HINO			UNIT NR. : MODEL : FUEL :	4229 WD6		
			DATE :	4/6/94		
340709			ENG. RPM	2468		
35			STACK(m	100		
948			LOAD:	Hi Idle		
TEST 1	TEST 2	TEST 3	TEST 4	TEST 5	AVERAGE	% ST.DEV
110	111	111	110	111	111	0.50
127	128	129	129	129	128	0.70
30	30	30	30	30	30.0	0.00
0.04	0.04	0.04	0.035	0.03	0.037	12.09
2.25	2.25	2.25	2.23	2.23	2.24	0.49
13.16	13.17	13.15	13.15	13.16	13.16	0.06
0.825	0.827	0.826	0.814	0.816	0.821	0.78
4.58E+04				:		
	1. A.					
			DATE :	23/10/94		
67905			ENG. RPM	2440-2450)	
28			STACK(m	100		
960			LOAD:	Hi Idle		
TEST 1	TEST 2	TEST 3	TEST 4	TEST 5	AVERAGE	% ST.DEV
100	100	99	100	99	100	0.55
130	131	131	131	131	131	0.34
30	30	30	30	30	30.0	0.00
0.04	0.04	0.04	0.04	0.04	0.040	0.00
2.17	2.17	2.18	2.18	2.18	2.18	0.25
17.81	17.81	17.80	17.81	17.82	17.81	0.04
0.758	0.758	0.757	0.761	0.757	0.758	0.21
	APSRTC BUS HINO 340709 35 948 <i>TEST 1</i> 110 127 30 0.04 2.25 13.16 0.825 4.58E+04 67905 28 960 <i>TEST 1</i> 100 130 30 0.04 2.17 17.81 0.758	APSRTC BUS HINO 340709 35 948 <i>TEST 1 TEST 2</i> 110 111 127 128 30 30 0.04 0.04 2.25 2.25 13.16 13.17 0.825 0.827 4.58E+04 <i>TEST 1 TEST 2</i> 1.00 100 130 131 30 30 0.04 0.04 2.17 2.17 17.81 17.81	APSRTC BUS HINO 340709 35 948 <i>TEST 1 TEST 2 TEST 3</i> 110 111 111 127 128 129 30 30 30 0.04 0.04 0.04 2.25 2.25 2.25 13.16 13.17 13.15 0.825 0.827 0.826 4.58E+04 <i>TEST 1 TEST 2 TEST 3</i> 100 100 99 130 131 131 30 30 30 0.04 0.04 0.04 2.17 2.17 2.18 17.81 17.81 17.80	APSRTC LOCATIO BUS UNIT NR.: HINO MODEL :: 340709 ENG. RPM 35 STACK(m) 948 LOAD: $TEST 1$ $TEST 2$ $TEST 3$ $TEST 1$ $TEST 2$ $TEST 3$ 110 111 111 110 111 111 127 128 129 30 30 30 0.04 0.04 0.035 2.25 2.25 2.25 2.25 2.25 2.23 13.16 13.17 13.15 0.825 0.827 0.826 0.814 $4.58E+04$ ENG. RPM $5TACK(m)$ OAD : $TEST 1$ $TEST 2$ $TEST 3$ $TEST 4$ 100 100 99 100 130 131 131 131 30 30 30 30 0.04 0.04 0.04 0.04 100 130 131	APSRTC LOCATIO HYDRAE BUS UNIT NR. : 4229 HINO MODEL : WD6 FUEL : DATE : $4/6/94$ 340709 ENG. RPM 2468 STACK(m 100 948 LOAD: Hi Idle TEST 1 TEST 2 TEST 3 TEST 4 TEST 5 110 111 111 110 111 127 128 129 129 129 30 30 30 30 30 30 0.04 0.04 0.04 0.035 0.03 2.23 13.16 13.17 13.15 13.15 13.16 0.825 0.827 0.826 0.814 0.816 4.58E+04 ENG. RPM 2440-2450 STACK(m 100 100 960 LOAD: Hi Idle TEST 1 TEST 2 TEST 3 TEST 4 TEST 5 100 100 99 100 99 100 99 130 131 131 131 131 131 30 30	APSRTC LOCATIO HYDRABAD 2 DEPOT BUS UNIT NR. : 4229 MODEL : WD6 FUEL : . 340709 ENG. RPM 2468 35 STACK(m 100 948 LOAD: Hi Idle TEST 1 TEST 2 TEST 3 TEST 4 TEST 5 AVERAGE 110 111 111 110 111 111 127 128 129 129 128 30 30 30 30 30.00 0.04 0.04 0.035 0.03 0.037 2.25 2.25 2.23 2.24 13.16 13.16 0.825 0.827 0.826 0.814 0.816 0.821 4.58E+04

TOTAL HOURS ON TREATED -272804

PERCENTAGE CHANGE IN FUEL CONSUMPTION ((TREATED-BASE)/

-7.7 %

_

REMARKS:

REYNOLDS NR. : 4.36E+04

Annexure "D"

 \sim

4

Bosch Smoke Patches

Baseline Treated Bosch No. Unit No. Bosch No. 4/6/94 23/10/94 RP5 01 # 723 H2 T 23/ 10 184 the laik & APRTC # 723 723 0.2 0.1 Cerc H 3537 x 23/10/94 APRIC #5 lolart A 3537 0.3 0.4 3537 6555 T 23/10/94 # 422 PSATC # 422,95 *2 hlolant APRTC 4229 0.3 0.3 x 23/10/04 A 6366 50 # 6386 18 4 16 19 F APRICH 6386 0.1 0.2

BOSCH SMOKE METER FILTER TEST RESULTS